3.6.52 \(\int \frac {(a+b \sin (c+d x))^2}{(e \cos (c+d x))^{3/2}} \, dx\) [552]

3.6.52.1 Optimal result
3.6.52.2 Mathematica [A] (verified)
3.6.52.3 Rubi [A] (verified)
3.6.52.4 Maple [A] (verified)
3.6.52.5 Fricas [C] (verification not implemented)
3.6.52.6 Sympy [F(-1)]
3.6.52.7 Maxima [F]
3.6.52.8 Giac [F]
3.6.52.9 Mupad [F(-1)]

3.6.52.1 Optimal result

Integrand size = 25, antiderivative size = 113 \[ \int \frac {(a+b \sin (c+d x))^2}{(e \cos (c+d x))^{3/2}} \, dx=\frac {2 a b (e \cos (c+d x))^{3/2}}{d e^3}-\frac {2 \left (a^2+2 b^2\right ) \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d e^2 \sqrt {\cos (c+d x)}}+\frac {2 (b+a \sin (c+d x)) (a+b \sin (c+d x))}{d e \sqrt {e \cos (c+d x)}} \]

output
2*a*b*(e*cos(d*x+c))^(3/2)/d/e^3+2*(b+a*sin(d*x+c))*(a+b*sin(d*x+c))/d/e/( 
e*cos(d*x+c))^(1/2)-2*(a^2+2*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x 
+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(e*cos(d*x+c))^(1/2)/d/e^2/c 
os(d*x+c)^(1/2)
 
3.6.52.2 Mathematica [A] (verified)

Time = 0.72 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.63 \[ \int \frac {(a+b \sin (c+d x))^2}{(e \cos (c+d x))^{3/2}} \, dx=\frac {4 a b-2 \left (a^2+2 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 \left (a^2+b^2\right ) \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}} \]

input
Integrate[(a + b*Sin[c + d*x])^2/(e*Cos[c + d*x])^(3/2),x]
 
output
(4*a*b - 2*(a^2 + 2*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 2* 
(a^2 + b^2)*Sin[c + d*x])/(d*e*Sqrt[e*Cos[c + d*x]])
 
3.6.52.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3170, 27, 3042, 3148, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \sin (c+d x))^2}{(e \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \sin (c+d x))^2}{(e \cos (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 3170

\(\displaystyle \frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))}{d e \sqrt {e \cos (c+d x)}}-\frac {2 \int \frac {1}{2} \sqrt {e \cos (c+d x)} \left (a^2+3 b \sin (c+d x) a+2 b^2\right )dx}{e^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))}{d e \sqrt {e \cos (c+d x)}}-\frac {\int \sqrt {e \cos (c+d x)} \left (a^2+3 b \sin (c+d x) a+2 b^2\right )dx}{e^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))}{d e \sqrt {e \cos (c+d x)}}-\frac {\int \sqrt {e \cos (c+d x)} \left (a^2+3 b \sin (c+d x) a+2 b^2\right )dx}{e^2}\)

\(\Big \downarrow \) 3148

\(\displaystyle \frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))}{d e \sqrt {e \cos (c+d x)}}-\frac {\left (a^2+2 b^2\right ) \int \sqrt {e \cos (c+d x)}dx-\frac {2 a b (e \cos (c+d x))^{3/2}}{d e}}{e^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))}{d e \sqrt {e \cos (c+d x)}}-\frac {\left (a^2+2 b^2\right ) \int \sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 a b (e \cos (c+d x))^{3/2}}{d e}}{e^2}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))}{d e \sqrt {e \cos (c+d x)}}-\frac {\frac {\left (a^2+2 b^2\right ) \sqrt {e \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)}}-\frac {2 a b (e \cos (c+d x))^{3/2}}{d e}}{e^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))}{d e \sqrt {e \cos (c+d x)}}-\frac {\frac {\left (a^2+2 b^2\right ) \sqrt {e \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)}}-\frac {2 a b (e \cos (c+d x))^{3/2}}{d e}}{e^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))}{d e \sqrt {e \cos (c+d x)}}-\frac {\frac {2 \left (a^2+2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {2 a b (e \cos (c+d x))^{3/2}}{d e}}{e^2}\)

input
Int[(a + b*Sin[c + d*x])^2/(e*Cos[c + d*x])^(3/2),x]
 
output
-(((-2*a*b*(e*Cos[c + d*x])^(3/2))/(d*e) + (2*(a^2 + 2*b^2)*Sqrt[e*Cos[c + 
 d*x]]*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]))/e^2) + (2*(b + a 
*Sin[c + d*x])*(a + b*Sin[c + d*x]))/(d*e*Sqrt[e*Cos[c + d*x]])
 

3.6.52.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3148
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[(-b)*((g*Cos[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + 
 Simp[a   Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && 
 (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])
 

rule 3170
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-(g*Cos[e + f*x])^(p + 1))*(a + b*Sin[e + f*x 
])^(m - 1)*((b + a*Sin[e + f*x])/(f*g*(p + 1))), x] + Simp[1/(g^2*(p + 1)) 
  Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + 
a^2*(p + 2) + a*b*(m + p + 1)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g 
}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LtQ[p, -1] && (IntegersQ[2*m, 2* 
p] || IntegerQ[m])
 
3.6.52.4 Maple [A] (verified)

Time = 4.68 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.75

method result size
default \(\frac {4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2}+4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-4 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}+4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) a b}{e \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}\) \(198\)
parts \(-\frac {2 a^{2} \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{e \sqrt {-e \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d}-\frac {4 b^{2} \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{e \sqrt {-e \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d}+\frac {4 a b}{\sqrt {e \cos \left (d x +c \right )}\, e d}\) \(422\)

input
int((a+b*sin(d*x+c))^2/(e*cos(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
2/e/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)/sin(1/2*d*x+1/2*c)*(2*cos(1/2*d*x+ 
1/2*c)*sin(1/2*d*x+1/2*c)^2*a^2+2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2* 
b^2-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic 
E(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/ 
2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+2*sin(1/ 
2*d*x+1/2*c)*a*b)/d
 
3.6.52.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.21 \[ \int \frac {(a+b \sin (c+d x))^2}{(e \cos (c+d x))^{3/2}} \, dx=\frac {\sqrt {2} {\left (-i \, a^{2} - 2 i \, b^{2}\right )} \sqrt {e} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {2} {\left (i \, a^{2} + 2 i \, b^{2}\right )} \sqrt {e} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (2 \, a b + {\left (a^{2} + b^{2}\right )} \sin \left (d x + c\right )\right )} \sqrt {e \cos \left (d x + c\right )}}{d e^{2} \cos \left (d x + c\right )} \]

input
integrate((a+b*sin(d*x+c))^2/(e*cos(d*x+c))^(3/2),x, algorithm="fricas")
 
output
(sqrt(2)*(-I*a^2 - 2*I*b^2)*sqrt(e)*cos(d*x + c)*weierstrassZeta(-4, 0, we 
ierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + sqrt(2)*(I*a^2 
+ 2*I*b^2)*sqrt(e)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(2*a*b + (a^2 + b^2)*sin(d*x + 
 c))*sqrt(e*cos(d*x + c)))/(d*e^2*cos(d*x + c))
 
3.6.52.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \sin (c+d x))^2}{(e \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate((a+b*sin(d*x+c))**2/(e*cos(d*x+c))**(3/2),x)
 
output
Timed out
 
3.6.52.7 Maxima [F]

\[ \int \frac {(a+b \sin (c+d x))^2}{(e \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (b \sin \left (d x + c\right ) + a\right )}^{2}}{\left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*sin(d*x+c))^2/(e*cos(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate((b*sin(d*x + c) + a)^2/(e*cos(d*x + c))^(3/2), x)
 
3.6.52.8 Giac [F]

\[ \int \frac {(a+b \sin (c+d x))^2}{(e \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (b \sin \left (d x + c\right ) + a\right )}^{2}}{\left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*sin(d*x+c))^2/(e*cos(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate((b*sin(d*x + c) + a)^2/(e*cos(d*x + c))^(3/2), x)
 
3.6.52.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sin (c+d x))^2}{(e \cos (c+d x))^{3/2}} \, dx=\int \frac {{\left (a+b\,\sin \left (c+d\,x\right )\right )}^2}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((a + b*sin(c + d*x))^2/(e*cos(c + d*x))^(3/2),x)
 
output
int((a + b*sin(c + d*x))^2/(e*cos(c + d*x))^(3/2), x)